Recitation 7: Martingale

Lecturer: Chenlin Gu

Exercise 1. Recall the following definitions in the course: filtration, adapted process, martingale (submartingale, supermartingale), previsible process, stopping time.

Exercise 2. Prove that if $(X_n)_{n \ge 0}$ is a martingale, then $(|X_n|)_{n \ge 0}$ is a submartingale.

Exercise 3. Let $(X_n)_{n \ge 0}$ be i.i.d. random variables with mean μ and variance $\sigma^2 < \infty$. Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ be its natural filtration. We define that $S_n := \sum_{i=1}^n X_i - \mu n$. Show that:

- 1. $(S_n)_{n \ge 0}$ is a martingale;
- 2. If $\mu = 0$, then $(S_n)^2 \sigma^2 n$ is a martingale;
- 3. We define $\tau_M := \inf\{n \in \mathbb{N} : S_n \ge M\}$. Prove that τ_M is a stopping time.

Exercise 4. Let $(X_n)_{n \ge 2}$ be a sequence of independent random variables satisfying

$$\mathbb{P}[X_n = k] = \binom{n}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k},$$

for $k \in \{0, \dots, n\}$. Show that

- 1. $\tau = \inf\{n \in \mathbb{N} : X_n > 1\}$ is a stopping time with respect to the filtration $\mathcal{F}_n = \sigma(X_2, \cdots, X_n)$.
- 2. τ is almost surely finite.

Exercise 5. Suppose that $(X_n)_{n \ge 0}$ is a submartingale and τ is a stopping time with $\mathbb{P}[\tau \le k] = 1$. Show that

$$\mathbb{E}[X_0] \leqslant \mathbb{E}[X_\tau] \leqslant \mathbb{E}[X_k].$$